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Abstract What are the face-probabilities of a cuboidal die, i.e. a die with
different side-lengths? This paper introduces a model for these probabilities
based on a Gibbs distribution. Experimental data produced in this work and
drawn from the literature support the Gibbs model. The experiments also
reveal that the physical conditions, such as the quality of the surface onto
which the dice are dropped, can affect the face-probabilities. In the Gibbs
model, those variations are condensed in a single parameter, adjustable to the
physical conditions.
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1 Introduction

Symmetry considerations make it seem obvious that an ideal cubical die lands
on all six faces with an identical probability of 1

6 . However, what happens
when non-fair dice are tossed? In particular, what are the face-probabilities
of a homogeneous cuboid, i.e. a six-sided polyhedron with parallel faces but
different side-lengths? This is a surprisingly challenging problem.

This paper offers a robust answer to the question above. It begins with a
brief historical account (Section 2) and presents a control experiment with a
single cuboid (Section 3) that is used as a benchmark for the theoretical mod-
elling. Section 4 then introduces a new model based on a Gibbs distribution,
which is found to be consistent with the control experiment. This model natu-
rally contains a free parameter, which characterizes the physical conditions of
the experiment. The new model is then compared against experimental data
with differently sized cuboids drawn from the literature (Section 5) and ex-
tended to non-cuboidal dice via the example of U-shaped dice (Section 6).
Section 7 summaries the findings of this paper.

2 Brief history

Already Isaac Newton mentioned the problem. In a private writing dated be-
tween 1664 and 1666, and published in 1967 (Newton, 1967, p. 60–61), he
wrote on the face-probabilities of a tossed cuboid: “if a die bee not a Regular
body but a Parallelepipedon or otherwise unequally sided, it may bee found
how much one cast is more easily gotten then another.” It remains unclear
whether Newton really tried to solve this problem.

In 1692, the problem appeared again in a paper by John Arbuthnot: “In a
Parallelopipedon, whose Sides are to another in the Ratio of a,b,c: to find at
how many Throws any one may undertake that any given Plane, viz. ab, may
arise” (quoted from Hykšová et al., 2012). Arbuthnot wrote that he left “the
solution to those who think it merits their pains.”

Fifty years later, Thomas Simpson (1740) used a simple geometrical idea
to model the face-probabilities of a tossed cuboid. He assumed the probabil-
ity of each face to be proportional to the surface area of the corresponding
spherical quadrilateral, i.e. to the solid angle spanned by the face when seen
from the centre of the cuboid. However, subsequent experimental investigations
(e.g. Singmaster, 1981) clearly rejected Simpson’s model. Budden (1980) and
Heilbronner (1985) also experimented with series of cuboids. Although Budden
and Heilbronner did not find a formula for the face-probabilities, their data
again disqualifies the Simpson model, and so do modern computer simulations
of tossed cuboids (Obreschkow, 2006). Regardless of the clear insufficiency of
the Simpson model, a recent paper by Hykšová et al. (2012) still refers to this
model without criticism. Because of this discrepancy, this paper will first reem-
phasize the insufficiency of the Simpson model (Section 3), before introducing
a much more accurate model (Section 4).
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3 Control experiment

The control experiment is performed with a wooden (13 × 20 × 23 mm3)-
cuboid. When tossing this cuboid, it became clear that the face-probabilities
significantly depend on the physical conditions, such as the tossing technique,
the height of free fall, the shape of the cuboid’s edges, and the elasticity of
the surface on which the cuboid lands. For example, a rough or elastic surface
generally increases the face-probabilities of the two largest faces. The same
qualitative change is observed when the cuboid is tossed from an arm-length
above the table rather than using a dice cup.

To account for the importance of the physical conditions, two experimental
runs were performed. In experiment I, the cuboid was tossed N = 2, 700 times
on a wooden table using a leather dice cup. In experiment II, the cuboid
was dropped N = 1, 000 times onto a polished steel surface from an initial
height of 1 m. Table 1 lists the observed frequencies fi = ni/N , where ni is
the number of times that face i (i = 1, ..., 6) showed up. As expected, the
measured frequencies differ significantly between experiment I and II, thus
demonstrating that the shape of the cuboid alone does not determine the face-
probabilities. Several physical reasons might be responsible for the different
outcome probabilities in the two experiments. For example, the dice cup might
have a stabilizing function when the cuboid lands on one of its small faces. In
turn, dropping a cuboid from a high level (1 m) implies that the cuboid bounces
off the floor many times before it comes to rest. Multiple bounces tend to result
in a fast rolling around the longest axis of the cuboid, which implies that the
cuboid is very unlikely to land on one of the two smallest faces. Qualitatively
this suggests that the face-probabilities of the largest faces increase with the
initial energy of the tossing process.

The differences in the observed frequencies of opposite faces (e.g. face 3
and 4) give a rough estimate of the deviation between measured frequencies
and underlying probabilities. Those deviations would disappear if N →∞.

For comparison Table 1 shows the face-probabilities predicted by the Simp-
son model (explained in Section 2). This model fits neither of the two experi-
ments. In comparison to both experiments, it clearly overpredicts the proba-
bilities of the smallest faces and underestimates the probabilities of the largest
faces. A much more accurate description is offered by the Gibbs models in Ta-
ble 1, whose free parameter has been fitted to experiment I and II, respectively.
This new model is now explained in Section 4.

4 Gibbs distribution

Following independent ideas of Riemer (1991) and Obreschkow (2006), this sec-
tion uses Gibbs distributions to model the face-probabilities of tossed cuboids.
Gibbs distributions are probability distributions that are commonly used in
many fields of probability theory, mathematical statistics, as well as statistical
mechanics, from where they originate. The philosophy of this paper is to adopt
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Face i 1 2 3 4 5 6
Surface area [mm2] 299 260 460 460 260 299
Half-height hi [mm] 10 11.5 6.5 6.5 11.5 10
fi experiment I (N = 2, 700) [%] 10.3 7.7 30.9 32.7 7.6 10.9
fi experiment II (N = 1, 000) [%] 5.5 1.5 43.5 42.5 2.6 4.1
pi Simpson model [%] 13.5 10.5 26.0 26.0 10.5 13.5
pi Gibbs model (β = 2.69) [%] 11.2 7.2 31.6 31.6 7.2 11.2
pi Gibbs model (β = 5.58) [%] 5.0 2.0 43.0 43.0 2.0 5.0

Table 1 Control experiment with a homogeneous (13 × 20 × 23 mm3)-cuboid. Faces 1 and
6: 13 × 23 mm; faces 2 and 5: 13 × 20 mm, faces 3 and 4: 20 × 23 mm. See Section 3 for
details.

Gibbs distributions in a heuristic way, that is without deriving them from a set
physical assumptions. The model then gains its validity a posteriori though
verification against experimental data – a common approach in statistics.

A Gibbs distribution can be summarized as follows: consider a system with
k states, where each state i = 1, ..., k has a positive energy Ei. If the Gibbs
theory applies, the system is found in state i with probability

pi(β) = Z(β)−1 exp(−βEi), (1)

where β is a positive parameter, called inverse temperature (because it is
proportional to T−1 in thermodynamics), and Z(β) ≡

∑
i exp(−βEi) is a

normalization factor, called the partition function. The parameter β controls
the character of the Gibbs distribution: if β = 0 the distribution is uniform
with equal probabilities for all states i ∈ {1, ..., k}; as β →∞ the distribution
becomes peaked with the minimal energy state(s) having a probability equal
to 1; for any intermediate β ∈ (0,∞), the probability of a state increases
monotonically with decreasing energy.

In modeling the tossing experiments, the states are the faces that end up
lying on top, i.e. the cuboid is said to be in state i if it comes to rest with face i
on top (thus k = 6). The energy of state i is taken proportional to the potential
energy, i.e. to the height hi of the center of gravity in state i. Note that in this
way inhomogeneities in the mass distribution of the cuboid are accounted for,
as illustrated in Section 6. If the cuboid is homogeneous, hi = si/2 where si
is the vertical side-length of the cuboid in state i. To eliminate physical units,
the energy Ei ∝ hi is normalized to h0 = 0.5 volume1/3,

Ei ≡
hi

(
∏

3
i=1hi)

1/3
=

si
(
∏

3
i=1si)

1/3
. (2)

Given this definition of the energies Ei, β is the only free parameter in the
Gibbs distribution of Eq. (1). This parameter can be fitted to experimental
data, for example using a maximum likelihood estimation (MLE). This method
consists in maximizing the likelihood function

L(β) ≡
6∏

i=1

[pi(β)]ni = Z(β)−N
6∏

i=1

exp(−βEini), (3)
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where ni is the number of observations of state i and N ≡
∑6

i=1 ni. In prac-

tice, L(β) can easily be maximized by minimizing lnZ(β) + β
∑6

i=1Eifi. Dif-
ferent values of β can maximize L(β) in different experimental conditions. As
explained above, small values of β are expected in experimental conditions
where all six faces appear frequently, while higher values of β are expected if
the smallest faces appear rarely. Explicitly, in the control experiment I (tossing
with a dice cup) smaller values of β are expected, than in the control exper-
iment II (free fall from 1 m height). In fact, the MLE yields β = 2.69 and
β = 5.58 for experiments I and II, respectively. The corresponding probabil-
ities of the Gibbs model are displayed in the bottom rows of Table 1. These
probabilities (e.g. 43.0% for faces 3 and 4 in experiment II) lie often between
the measured frequencies of the corresponding faces (e.g. 43.5% and 42.5%),
thus suggesting that the model sufficiently describes the data. An explicit χ2

goodness-of-fit test shows that the predictions of the Gibbs model are indeed
statistically consistent with the experimental data. This test will be used again
and explained in more detail in the following section.

5 Two classical experiments revisited

Section 4 revealed that the Gibbs model offers a good approximation of the
data gathered in the control experiment. The control experiment was based
on a single cuboid with three different side-lengths. This section confronts the
Gibbs model with other experimental data drawn from the literature. The
main purpose of this comparison is to test whether the Gibbs model with a
constant parameter β can describe a variety of differently shaped cuboids,
tossed in similar experimental conditions.

The experiments considered here are summarized in Table 2. They were
performed by Budden (1980) and Heilbronner (1985), respectively. Both au-
thors used families of xxy-cuboids, i.e. cuboids with equal side-lengths sx in
two orthogonal directions and a different side-length sy in the third direc-
tion. Both authors experimented with a family of m cuboids j = 1, ...,m
(m = 15 for Budden and m = 7 for Heilbronner) with identical side-lengths
sx (sx = 15 mm for Budden and sx = 25 mm for Heilbronner), and vary-
ing side-lengths sy,j . Budden used cuboids “cut from a mild steel bar whose
cross-section was a square of side 15 mm. These were distributed to a class
of boys who tossed and rolled them while recording the results.” By contrast,
Heilbronner used cuboids from polyvinylchloride of density ≈ 1, 500 kg m−3.
They were tossed “in the usual manner, i.e. rolled manually or from a shaker
on cloth covered surfaces as well as on linoleum in a ratio of approximately one
to one for each set of dice.” The vast differences in the material and tossing
techniques between Budden and Heilbronner suggest that these two datasets
are described by different values β in the Gibbs model. However, the question
to be investigated is whether within each dataset (Budden or Heilbronner) the
m cuboids can be described by a constant parameter β.
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To model the face-probabilities of a single xxy-cuboid, the formalism of
Section 4 can be simplified, since xxy-cuboids only exhibit two macro-states:
the xx-state, showing one of the two square faces, and the xy-state showing
one of the four rectangular faces. Given N tosses and nxx observations of the
xx-state, the corresponding frequency is fxx = nxx/N . To model the face-
probability pxx, the Gibbs model of Eq. (1) can be rewritten as

pxx = Z(β)−1 exp(−βEy) (4)

where Ex = sx/(sxsxsy)1/3, Ey = sy/(sxsxsy)1/3, and Z(β) = 2 exp(−βEx)+
exp(−βEy). Using Eq. (3) and pxy = 1 − pxx the likelihood function for β
becomes

L(β) = pxx(β)nxx(1− pxx(β))N−nxx . (5)

Given a set of m differently sized xxy-cuboids j = 1, ...,m (with respec-
tive variables pxx,j , Nj , nxx,j , etc.), the best fitting constant parameter β for
all cuboids in the same dataset can be obtained by maximizing the global
likelihood function

L(β) =

m∏
j=1

Lj(β) =

m∏
j=1

pxx,j(β)nxx,j (1− pxx,j(β))Nj−nxx,j . (6)

In practice, L(β) can be maximized more easily by minimizing the function∑m
j=1[Nj lnZj(β) + β(nxx,jEy,j + (1 − nxx,j)Ex,j)]. This results in β = 4.46

sx [mm] sy [mm] N nxx fxx [%] pxx [%]

B
u

d
d

en

15 7.1 332 304 91.6 91.0
15 9.5 840 620 73.8 77.0
15 11.2 799 438 54.8 63.5
15 12.15 740 367 49.6 55.4
15 13.95 516 206 39.9 40.8
15 14.5 530 204 38.5 36.8
15 17.4 1011 150 14.8 20.2
15 18.45 532 82 15.4 16.1
15 21.6 654 34 5.2 8.1
15 23.25 606 24 4.0 5.7
15 24 702 12 1.7 4.8
15 25.6 609 19 3.1 3.5
15 28 680 6 0.9 2.1
15 31.75 275 2 0.7 1.0
15 39.7 503 3 0.6 0.2

H
ei

lb
ro

n
n

er

25 5 2145 2089 97.4 98.4
25 10 2184 1929 88.3 89.8
25 15 2103 1559 74.1 72.7
25 20 2238 1244 55.6 51.7
25 30 2202 421 19.1 20.5
25 35 2259 239 10.6 12.4
25 40 2250 162 7.2 7.6

Table 2 Experimental datasets obtained by Budden and Heilbronner using different xxy-
cuboids. The last column is the prediction of the Gibbs model using β = 4.46 (Budden) and
β = 3.53 (Heilbronner).
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Fig. 1 Measured frequencies fxx and fitted Gibbs probabilities pxx with a constant β, as
a function of the side-ratio sy/sx . The experimental values are those listed in Table 2.

Vertical error bars represent standard deviations of fxx approximated as
√
fxx/nxx, and

horizontal error bars are standard deviations associated with 5% manufacturing errors for
the side-lengths.

for the experiments performed by Budden and β = 3.53 for those performed
by Heilbronner. The corresponding face-probabilities predicted by the Gibbs
model are listed in the last column of Table 2 and plotted against sy/sx in
Figure 1. Qualitatively, there seems to be a good agreement between the ex-
perimental data and the model.

The rest of this section investigates whether the data is indeed statistically
consistent – in a quantitative way – with the Gibbs model using a constant β
per dataset. To do so, a χ2 test inspired by Gibbons and Chakraborti (2003)
is used. The expected number of appearances of the xx-state is Njpxx,j with
a variance of Njpxx,j . Therefore, the variance between experimental counts
and model-prediction, normalized to the model variance, reads (Njpxx,j −
nxx,j)

2/(Njpxx,j). Applying an analogous reasoning to the xy-state and sum-
ming over all the different cuboids, yields

χ2 =
m∑
j=1

[
(Njpxx,j − nxx,j)2

Njpxx,j
+

(Nj(1− pxx,j)− (Nj − nxx,j))2

Nj(1− pxx,j)

]
. (7)

If χ2/m ≤ 1, then the Gibbs model with a constant β per dataset fully de-
scribes the experimental data; if χ2/m > 1, the experimental data is not
sufficiently matched by the model. Explicit calculations yield χ2/m = 6.2
(Budden) and χ2/m = 6.6 (Heilbronner), thus rejecting the hypothesis of a
Gibbs model with a constant β per dataset at 2.5 standard deviations. In
other words, this hypothesis seems to be rejected with a certainty of nearly
99%. However, this χ2 test ignores experimental uncertainties of various kinds,
which shall now be addressed approximately.
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Potentially, there are various sources of systematic uncertainties in the ex-
perimental data. For example, the tossing techniques might have been different
for every xxy-cuboid. This is particularly plausible in Budden’s experiment,
where different cuboids were tossed by different children. Further, the cuboids
are not perfect due to material and manufacturing errors. To estimate the effect
of manufacturing errors on the consistency between the data and the Gibbs
model, an extended χ2 test is performed, which explicitly accounts for uncer-
tainties in the side-lengths sx and sy,j . It is assumed that these side-lengths
are only known up to Gaussian errors with standard deviations εsx and εsy,j .
Hence, ε represents the relative uncertainty of the side-lengths. The hypoth-
esis that the m empirical fxx,j belong to Gibbs distributions with a constant
β is then tested using a parametric bootstrap test based on 999 independent
iterations. In each iteration the following steps are executed.

– For every cuboid j = 1, ...,m,
– chose side-lengths s∗x = G(sx, εsx) and s∗y,j = G(sy,j , εsy,j), where
G(x, σ) denotes a random number from a normal distribution with
mean x and standard deviation σ,

– calculate the probability p∗xx,j of the xx-state using eq. (4) with the
original β (4.46 for Budden, 3.53 for Heilbronner) and the new side-
lengths s∗x and s∗y,j ,

– simulate Nj tossing events, in which the xx-state appears with proba-
bility p∗xx,j , and count the number n∗xx,j ,

– calculate the corresponding frequencies f∗xx,j = n∗xx,j/Nj .
– Use the m values of f∗xx,j to estimate the best parameter β∗ via eq. (3).
– Calculate the new probabilities p̃xx,j using eq. (4) with β∗, sx and sy,j .
– Calculate the value χ̃2 using eq. (7) with the probabilities p̃xx,j .

If the original χ2 is large in comparison to the 999 simulated values of χ̃2,
the hypothesis of a constant β must be rejected.

However, the p-values listed in Table 3 show that already values around ε =
0.05, i.e. manufacturing errors of 5%, make the experimental data compatible
with the hypothesis of a constant β for all m cuboids. Measurements of the
masses of machine-manufactured wood cuboids similar to those of Budden
revealed mass deviations around 7% between ‘identical’ cuboids, roughly in
line with side-length variations of 5%.

In summary, the Gibbs model with a constant β for all the cuboids in a
dataset (Budden or Heilbronner) is consistent with the experimental data as
long as plausible manufacturing errors are accounted for. Figuratively speak-

ε Budden Heilbronner
0.03 0.000 0.003
0.04 0.006 0.021
0.05 0.067 0.090
0.06 0.187 0.206

Table 3 p-values of χ2 in the simulated χ2-distribution to test the hypothesis of the Gibbs
model with a constant β per dataset (Budden or Heilbronner).



Cuboidal Dice and Gibbs Distributions 9

ing, the data points in Figure 1 are consistent with the models, as long as the
horizontal error bars are included.

6 Extension to non-cuboidal dice

As shown so far, the Gibbs model fully describes the face-probabilities of tossed
cuboids within the uncertainties of currently available experimental data. This
motivates the idea that the Gibbs model could be extended to more complex
dice geometries and inhomogeneous cuboids. A full investigation of this idea
lies beyond the scope of this paper, but to provide an illustration the U-shaped
die shown in Figure 2 is considered. Two experimental runs were performed
with this die. In experiment I, the die was tossed N = 1, 950 times onto a hard
surface; in experiment II it was dropped N = 150 times onto a wool carpet.
The measured frequencies of the different faces are listed in Table 4. Unlike the
cuboid, the U-shaped die has no symmetry between the faces 3 and 4. However,
the Gibbs model as given in Eq. (1) can still be applied using the heights hi of
the center of gravity listed in Table 4. To calculate the corresponding energies
Ei the hi are normalized to h0 = 0.5 (volume)1/3 = 9.08 mm, where the
volume is now taken as the smallest convex bounding volume. The maximum
likelihood method yields β = 2.77 (experiment I) and β = 4.59 (experiment
II), respectively. The higher β of the second experiment is clearly related to
the wool carpet’s softness, which tends to destabilize positions with a high
center of gravity, thus making the probabilities more skewed towards the most
stable positions.

The probabilities of the Gibbs model are consistent with the data in terms
of the χ2 test discussed in Section 5, hence demonstrating that the Gibbs
model extends to non-cuboidal dice.

Fig. 2 Image of the U-shaped die. The digits are the indices of the visible faces. Face 1
(opposite face 6) is hidden on the left, face 2 (opposite face 5) is hidden at the back, and
face 3 (opposite face 4) is hidden at the bottom.
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Face i 1 2 3 4 5 6
Heights of center of gravity hi [mm] 10.0 11.5 7.61 5.39 11.5 10.0
fi experiment I (N = 1, 950) [%] 10.6 6.9 23.9 42.5 6.8 9.3
fi experiment II (N = 150) [%] 4.7 2.0 28.0 57.3 1.3 6.7
pi Gibbs model (β = 2.77) [%] 10.6 6.7 22.0 43.4 6.7 10.6
pi Gibbs model (β = 4.59) [%] 6.0 2.8 20.2 62.1 2.8 6.0

Table 4 Results of tossing the U-shaped die shown in Figure 2. Note that experiment II
has a very small number N , thus very large statistical uncertainties on the values fi.

7 Summary

This paper uncovered that the face-probabilities of a tossed cuboid are well de-
scribed by the Gibbs model defined via Eqs. (1) and (2). These face-probabilities
depend heavily on the tossing conditions – an effect that can be accounted for
by the Gibbs model by adjusting the free parameter β. Good fits of β can
be obtained via the maximum likelihood method of Eq. (3). Typical values
of β range between 1 and 10. If differently shaped cuboids are all tossed us-
ing similar conditions (material, technique, etc.), then the face-probabilities
of all these cuboids can be well approximated using a constant parameter β,
estimated via the global maximum likelihood method of Eq. (6).
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